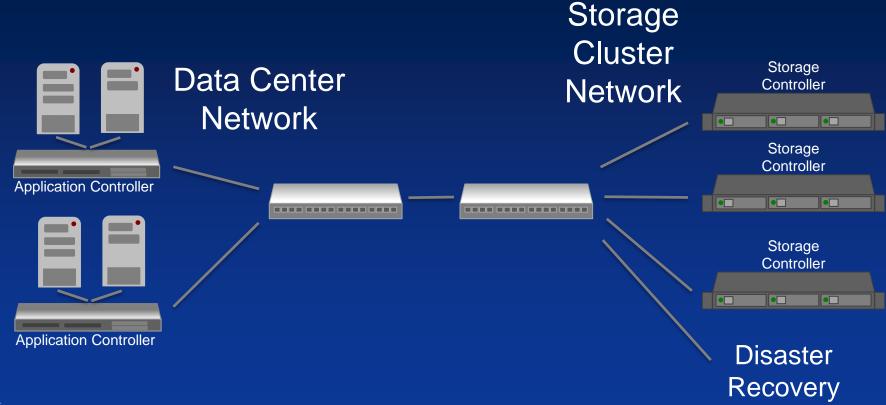


Concurrent Support of NVMe over RDMA Fabrics and Established Networked Block and File Storage

Ásgeir Eiriksson

CTO

Chelsio Communications Inc.


- API are evolving for optimal use of SSD
 - NVMe
 - NVMe over RDMA fabrics (NVMf), for networked access
- Huge installed base of SMB, NFS, FC, iSCSI, etc.
 - Ideally preserve existing storage product investment
 - Ideally support native NVMf API as ecosystem develops

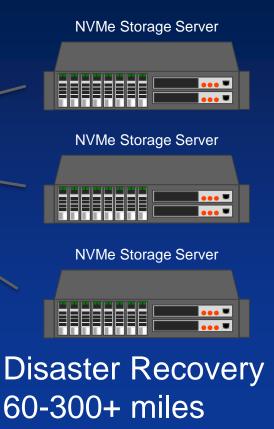
- Chelsio 10/25/40/50/100G Ethernet Adapters
 - Concurrent support for NVMf, SMB 3.X, NFSoRDMA, iSCSI, and FCoE
 - High BW and high IOPS for SMB 3.X, NFSoRDMA, iSCSI and FCoE using NVMe backing store
 - Concurrent High BW and high IOPS and low latency NVMf

Traditional Scale Out Storage

60-300+ miles

ory Traditional Scale Out Storage

Observations:


- High BW/IOPS NVMe support preserves software investment, because it keeps existing software price/performance competitive
- High BW/IOPS NVMe support realizes most of the NVMe speedup benefits
- Disaster Recovery (DR) requires MAN or WAN

Shared Server Flash

Ethernet, InfiniBand Omni Path Fabric

ory Shared Server Flash

- Observations:
 - Ethernet or IB or OmniPath fabric
 - RDMA required for sufficient efficiency
 - IB and OmniPath use RDMA
 - Ethernet has RoCEvn, iWARP and iSCSI
 - Disaster Recovery (DR) requires MAN or WAN
 - iWARP, iSCSI

ory Comparing Ethernet Options

- iSCSI, iWARP
 - Use DCB when it is available but not required for high performance
- iSCSI
 - Has RDMA WRITE and accomplishes RDMA READ by using an RDMA WRITE from other end-point
 - Concurrent support for legacy soft-iSCSI
- RoCEvn
 - Fork uplift of infrastructure required e.g. specialized Ethernet switches, and specialized NIC

ory Ethernet, Infiniband, OmniPath

- Infiniband, OmniPath
 - Reliable link layer
 - Credit based flow control
- Ethernet
 - Ubiquitous
 - Pause and Prioritized Pause (PPC) for lossless operation that propagates through some switches and fewer routers
 - Flow Control and Reliability at higher layer e.g. TCP, and IB Transport Layer for RoCE

Transparent Optimizations

Applications

APIs, Libraries

File System

SMB 3.X, Lustre, XFS, ext3, ext4, NVMFS

Flash Devices

I/O and Primitives (Atomics, etc.)
Memory, Persistent Memory

Flash-Aware Optimizations

40

- Preserve software investment
- Alternatively jump directly to native NVMe/NVMf API

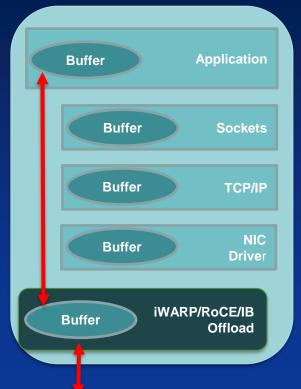
 Strong preference: preserve investment while at the same time making use of emerging NVMe technology

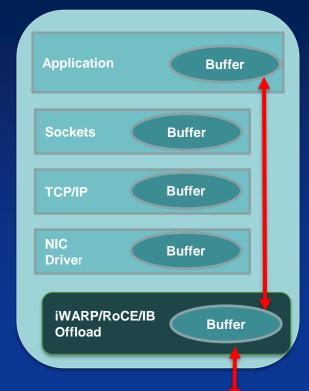
Comparing Ethernet Options

	DCB Required	Reach	IP routable	RDMA
FCoE	$\sqrt{}$	Rack, LAN		$\sqrt{}$
iSCSI	No	Rack, datacenter, LAN, MAN, WAN Wired, wireless		$\sqrt{}$
iWARP	No	Rack, datacenter, LAN, MAN, WAN Wired, wireless	$\sqrt{}$	V
RoCEv2		Rack, LAN, datacenter		$\sqrt{}$

Comparing Ethernet Options

- RDMA bypasses the host software stack
 - RoCEvn
 - iWARP
 - iSCSI with offload

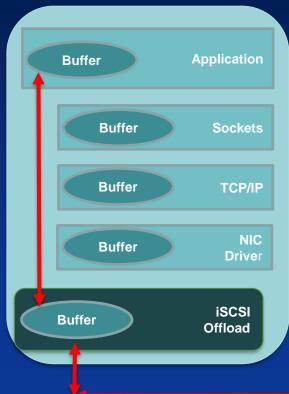


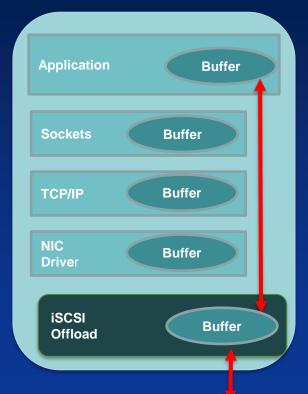

nory NVMe over RDMA fabrics

Target

Initiator

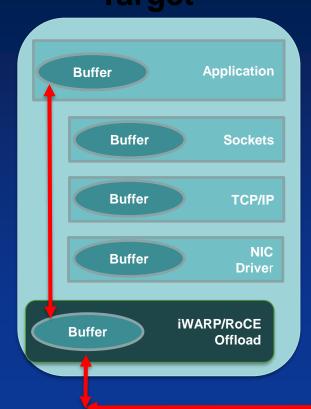
- Bypass
- RDMA

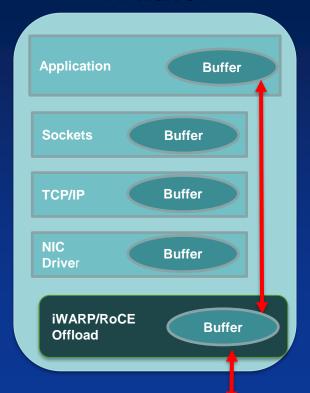



Memory iSCSI with offload

Target

- Bypass
- RDMA


Initiator



Memory iSER with offload Target

- Bypass
- RDMA

Initiator

Chelsio T5 40GE Performance

	BW	IOPS	Latency	Comment
SMBD (SMB 3.X)	40GE			
NFSoRDMA	40GE			
FCoE	40GE			
iSCSI	40GE			
NVMf	40GE		NVMe+8μs	Linux 4.7-rc3

List of http://www.chelsio.com links to the detailed setup

- API are evolving for optimal use of networked NVMe devices (NVMf)
 - High BW, High IOPS and low latency
- Chelsio 10/25/40/50/100GE adapters
 - Deliver high BW, High IOPS performance for SMB 3.X, NFSoRDMA, FCoE and iSCSI with NVMe
 - Concurrently: high BW, High IOPS, low latency NVMf

Questions?

Asgeir Eiriksson asgeir@chelsio.com